资源类型

期刊论文 881

会议视频 16

年份

2023 66

2022 95

2021 76

2020 39

2019 46

2018 38

2017 33

2016 39

2015 45

2014 46

2013 43

2012 52

2011 38

2010 48

2009 41

2008 32

2007 33

2006 14

2005 8

2004 9

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 6

泥水盾构 6

反渗透 5

水环境 4

环境 4

砂卵石地层 4

超滤 4

三峡工程 3

优化 3

农业节水 3

半旱地农业 3

绿色化工 3

Preissmann格式 2

中国西北地区 2

京津冀 2

光催化 2

养殖模式 2

展开 ︾

检索范围:

排序: 展示方式:

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 233-240 doi: 10.1007/s11708-009-0024-y

摘要: Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

关键词: supercritical water-cooled reactor     general corrosion     oxide film     corrosion mechanism    

Heat transfer with water flowing upward in a tube for pressures up to supercritical region

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 358-365 doi: 10.1007/s11708-009-0071-4

摘要: A heat transfer experiment was conducted in a tube of 6.07mm in diameter with water flowing upward, covering the ranges of pressure of 10―23MPa, mass flux of 288―1298kg/(m·s), local water temperature of 78°C―270°C, heat flux of 0.23―1.18MW/m and Reynolds number of 5.5×10―3.9×10. The experimental results were compared with the predictions of the Dittus-Boelter correlation, Jackson correlation, Bishop correlation, Swenson correlation and Yamagata correlation. Significant deterioration in heat transfer was observed in both subcritical and supercritical region due to the effect of buoyancy force, but it was not predicted reasonably by the existing correlations.

关键词: heat transfer     deterioration     buoyancy     supercritical water    

Experimental study of critical flow of water at supercritical pressure

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU, Xu CHENG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 175-180 doi: 10.1007/s11708-009-0029-6

摘要: Experimental studies of the critical flow of water were conducted under steady-state conditions with a nozzle 1.41 mm in diameter and 4.35 mm in length, covering the inlet pressure range of 22.1-26.8 MPa and inlet temperature range of 38-474°C. The parametric trend of the flow rate was investigated, and the experimental data were compared with the predictions of the homogeneous equilibrium model, the Bernoulli correlation, and the models used in the reactor safety analysis code RELAP5/MOD3.3. It is concluded that in the near or beyond pseudo-critical region, thermal-dynamic equilibrium is dominant, and at a lower temperature, choking does not occur. The onset of the choking condition is not predicted reasonably by the RELAP5 code.

关键词: critical flow     supercritical water-cooled reactor(SCWR)     reactor safety     loss of coolant accident(LOCA)    

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

《能源前沿(英文)》 2009年 第3卷 第2期   页码 193-197 doi: 10.1007/s11708-009-0030-0

摘要: Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

关键词: supercritical water cooled reactor     tensile     impact toughness     corrosion     aging    

Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 886-896 doi: 10.1007/s11705-021-2125-z

摘要: Supercritical water gasification is a promising technology in dealing with the degradation of hazardous waste, such as oily sludge, accompanied by the production of fuel gases. To evaluate the mechanism of Fe2O3 catalyst and the migration pathways of heteroatoms and to investigate the systems during the process, reactive force field molecular dynamics simulations are adopted. In terms of the catalytic mechanisms of Fe2O3, the surface lattice oxygen is consumed by small carbon fragments to produce CO and CO2, improving the catalytic performance of the cluster due to more unsaturated coordination Fe sites exposed. Lattice oxygen combines with •H radicals to form water molecules, improving the catalytic performance. Furthermore, the pathway of asphaltene degradation was revealed at an atomic level, as well as products. Moreover, the adsorption of hydroxyl radical on the S atom caused breakage of the two C–S bonds in turn, forming •HSO intermediate, so that the organic S element was fixed into the inorganic liquid phase. The heteroatom O was removed under the effects of supercritical water. Heavy metal particles presented in the oily sludge, such as iron in association with Fe2O3 catalyst, helped accelerate the degradation of asphaltenes.

关键词: oily sludge     SCWG     ReaxFF     Fe2O3     heteroatoms    

Hydrogen production by biomass gasification in supercritical or subcritical water with Raney-Ni and other

Aixia PEI, Lisheng ZHANG, Bizheng JIANG, Liejin GUO, Ximin ZHANG, Youjun LV, Hui JIN,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 456-464 doi: 10.1007/s11708-009-0069-y

摘要: Gasification of peanut shell, sawdust and straw in supercritical or subcritical water has been studied in a batch reactor with the presence of a series of Raney-Ni and its mixture with ZnCl or Ca(OH). The main gas products were hydrogen, methane, carbon dioxide, and a small amount of carbon monoxide. Different types of Raney-Ni, containing different metal components such as Fe, Mo or Cr, have different influences on the gasification yield and hydrogen selectivity. The catalysis effect can be improved obviously by adding ZnCl or Ca(OH). Increasing the reaction temperature or adding ZnCl and Ca(OH) could improve the mass of H in gas products and reduce the mass of CH and CO at the same time. The possible mechanism is that ZnCl can decompose the biomass particle by accelerating cellulose hydrolyzation in high-temperature water, increasing more specific surface to admit catalysts, while Ca(OH) can absorb CO to produce CaCO deposit, which can drop out from the reactant system, and which will drive the reaction to get more hydrogen. With respect to the biomass conversion to gas product and selectivity of H at low temperature, the series of Raney-Ni has shown many advantages over other catalysts; thus, this kind of catalyst has great potential to be utilized in the hydrogen industry for the gasification of biomass.

关键词: Different     presence     sawdust     Raney-Ni     Gasification    

Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow

YAN Qiuhui, GUO Liejin, LIANG Xing, ZHANG Ximin

《能源前沿(英文)》 2007年 第1卷 第3期   页码 327-330 doi: 10.1007/s11708-007-0048-0

摘要: Hydrogen is a clean energy carrier. Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection. The co-gasification performance of coal and a model compound of biomass, carboxymethylcellulose (CMC) in supercritical water (SCW), were investigated experimentally. The influences of temperature, pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20–25 MPa, 650vH, 15–30 s) are discussed in detail. The experimental results show that H, CO and CH are the main gas products, and the molar fraction of hydrogen reaches in excess of 60%. The higher pressure and higher CMC content facilitate hydrogen production; production is decreased remarkably given a longer residence time.

关键词: carboxymethylcellulose     temperature     co-gasification performance     Hydrogen     residence    

Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodieselvia supercritical methanol transesterification

Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 423-431 doi: 10.1007/s11708-009-0075-0

摘要: Biodiesel is an important renewable energy. Supercritical methanol transesterification for biodiesel has recently been concerned because of its obvious advantages. The tubular reactor is an ideal reactor for continuous preparation of biodiesel via supercritical methanol transesterification. A methanol preheating tube is necessary for the tubular reaction system because the reaction temperature for supercritical methanol transesterification is usually 520―600K. Therefore, in the range of 298―600K, changes of the density, isobaric capacity, viscosity and thermal conductivity of sub/supercritical methanol with temperature are first discussed. Then on the basis of these thermophysical properties, an integration method is adopted for the design of sub/supercritical methanol preheating tube when methanol is preheated from 298K to 600K at 16MPa and the influencing factors on the length of the preheating tube are also studied. The computational results show that the Reynolds number and the local convection heat-transfer coefficient of sub/supercritical methanol flowing in ф6mm×1.5mm preheating tube change drastically with temperature. For the local overall heat transfer coefficient and the average overall heat transfer coefficient , temperature also has an important influence on them when the inlet velocity of methanol is lower than 0.5m/s. But when the inlet velocity of methanol is higher than 0.5m/s, and almost keep invariable with temperature. Additionally, both the outlet temperature and the inlet velocity of methanol are the key affecting factors for the length of the preheating tube, especially when the outlet temperature is over the critical temperature of methanol. At the same time, the increase of tin bath’s temperature can shorten the required length of the preheating tube. At the inlet flow rate of 0.5m/s, the required length of the preheating tube is 2.0m when methanol is preheated from 298K to 590K at 16MPa with keeping the tin bath’s temperature 620K, which is in good agreement with the experimental results.

关键词: sub/supercritical methanol     preheating tube     integration method     biodiesel    

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 4-17 doi: 10.1007/s11705-020-1933-x

摘要: This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

关键词: bio-oil     upgrading     supercritical     review    

Polydimethylsiloxane assisted supercritical CO

Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao

《化学科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 396-404 doi: 10.1007/s11705-016-1577-z

摘要: Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing polydimethylsiloxane (PDMS) through?a?one-step?melt extrusion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.

关键词: high melt strength polypropylene (HMSPP)     polydimethylsiloxane (PDMS)     supercritical CO2     foaming behavior    

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 114-119 doi: 10.1007/s11708-017-0512-4

摘要: The supercritical circulating fluidized bed (CFB) boiler, which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy, is believed to be the future of CFB combustion technology. It is also of greatest importance for low rank coal utilization in China. Different from the supercritical pulverized coal boiler that has been developed more than 50 years, the supercritical CFB boiler is still a new one which requires further investigation. Without any precedentor engineering reference, Chinese researchers have conducted fundamental research, development, design of the supercritical CFB boilers independently. The design theory and key technology for supercritical CFB boiler were proposed. Key components and novel structures were invented. The first 600 MWe supercritical CFB boiler and its auxiliaries were successfully developed and demonstrated in Baima Power Plant, Shenhua Group as well as the simulator, control technology, installation technology, commissioning technology, system integration and operation technology. Compared with the 460 MWe supercritical CFB in Poland, developed in the same period and the only other supercritical one of commercial running in the word beside Baima, the 600 MWe one in Baima has a better performance. Besides, supercritical CFB boilers of 350 MWe have been developed and widely commercialized in China. In this paper, the updated progress of 660 MWe ultra-supercritical CFB boilers under development is introduced.

关键词: supercritical     circulating fluidized bed boiler     development     demonstration    

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

《能源前沿(英文)》 2022年 第16卷 第2期   页码 246-262 doi: 10.1007/s11708-021-0749-9

摘要: A comprehensive thermo-economic model combining a geothermal heat mining system and a direct supercritical CO2 turbine expansion electric power generation system was proposed in this paper. Assisted by this integrated model, thermo-economic and optimization analyses for the key design parameters of the whole system including the geothermal well pattern and operational conditions were performed to obtain a minimal levelized cost of electricity (LCOE). Specifically, in geothermal heat extraction simulation, an integrated wellbore-reservoir system model (T2Well/ECO2N) was used to generate a database for creating a fast, predictive, and compatible geothermal heat mining model by employing a response surface methodology. A parametric study was conducted to demonstrate the impact of turbine discharge pressure, injection and production well distance, CO2 injection flowrate, CO2 injection temperature, and monitored production well bottom pressure on LCOE, system thermal efficiency, and capital cost. It was found that for a 100 MWe power plant, a minimal LCOE of $0.177/kWh was achieved for a 20-year steady operation without considering CO2 sequestration credit. In addition, when CO2 sequestration credit is $1.00/t, an LCOE breakeven point compared to a conventional geothermal power plant is achieved and a breakpoint for generating electric power generation at no cost was achieved for a sequestration credit of $2.05/t.

关键词: geothermal heat mining     supercritical CO2     power generation     thermo-economic analysis     optimization    

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 702-717 doi: 10.1007/s11705-019-1861-9

摘要: The work studied a non-catalytic upgrading of fast pyrolysis bio-oil by blending under supercritical conditions using methanol, ethanol and isopropanol as solvent and hydrogen donor. Characterisation of the bio-oil and the upgraded bio-oils was carried out including moisture content, elemental content, pH, heating value, gas chromatography-mass spectrometry (GCMS), Fourier transform infrared radiation, C nuclear magnetic resonance spectroscopy, and thermogravimetric analysis to evaluate the effects of blending and supercritical reactions. The GCMS analysis indicated that the supercritical methanol reaction removed the acids in the bio-oil consequently the pH increased from 2.39 in the crude bio-oil to 4.04 after the supercritical methanol reaction. The ester contents increased by 87.49% after the supercritical methanol reaction indicating ester formation could be the major deacidification mechanism for reducing the acidity of the bio-oil and improving its pH value. Simply blending crude bio-oil with isopropanol was effective in increasing the C and H content, reducing the O content and increasing the heating value to 27.55 from 17.51 MJ·kg in the crude bio-oil. After the supercritical isopropanol reaction, the heating value of the liquid product slightly further increased to 28.85 MJ·kg .

关键词: bio-oil     blending     supercritical     upgrading     characterisation    

超临界化——优化我国火电结构应从这里起步

宋之平

《中国工程科学》 2002年 第4卷 第2期   页码 22-27

摘要:

文章认为优化火电结构应放在超临界化上,使超临界机组和超超临界机组在我国火电中占据举足轻重的比例。而且这些机组的主要性能指标以及环保性能等应不逊于同类机组的国际水平。论述了超临界技术在优化火电结构的特殊作用,指出超临界化已被证明是改造和优化火电结构的一种成功的道路,阐明了我国实施这一发展道路的必要性和可能性。

关键词: 火电结构     超临界     超超临界     可持续发展战略    

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl

Kimthet Chhouk, Wahyudiono, Hideki Kanda, Shin-Ichro Kawasaki, Motonobu Goto

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 184-193 doi: 10.1007/s11705-017-1678-3

摘要: Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-human immunodeficiency virus, and anti-microbial activity. In this work, a swirl mixer was employed to produce the micronized curcumin with polyvinylpyrrolidone (PVP) by the supercritical anti-solvent process to improve the bioavailability of curcumin. The effects of operating parameters such as curcumin/PVP ratio, feed concentration, temperature, pressure, and CO flow rate were investigated. The characterization and solubility of particles were determined by using scanning electron microscopy, Fourier Transform Infrared spectroscopy, and ultra-violet-visible spectroscopy. The result shows that the optimal condition for the production of curcumin/PVP particles is at curcumin/PVP ratio of 1:30, feed concentration of 5 mg·mL , temperature of 40 °C, pressure of 15 MPa, and CO flow rate of 15 mL·min . Moreover, the dissolution of curcumin/PVP particles is faster than that of raw curcumin.

关键词: micronization     curcumin     polyvinylpyrrolidone     supercritical anti-solvent     swirl mixer    

标题 作者 时间 类型 操作

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

Lefu ZHANG, Fawen ZHU, Rui TANG

期刊论文

Heat transfer with water flowing upward in a tube for pressures up to supercritical region

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU,

期刊论文

Experimental study of critical flow of water at supercritical pressure

Yuzhou CHEN, Chunsheng YANG, Shuming ZHANG, Minfu ZHAO, Kaiwen DU, Xu CHENG

期刊论文

Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled

Xinggang LI, Qingzhi YAN, Rong MA, Haoqiang WANG, Changchun GE

期刊论文

Chemical reactions of oily sludge catalyzed by iron oxide under supercritical water gasification condition

期刊论文

Hydrogen production by biomass gasification in supercritical or subcritical water with Raney-Ni and other

Aixia PEI, Lisheng ZHANG, Bizheng JIANG, Liejin GUO, Ximin ZHANG, Youjun LV, Hui JIN,

期刊论文

Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow

YAN Qiuhui, GUO Liejin, LIANG Xing, ZHANG Ximin

期刊论文

Calculation and analysis of sub/supercritical methanol preheating tube for continuous production of biodieselvia supercritical methanol transesterification

Wen CHEN, Weiyong YING, Cunwen WANG, Weiguo WANG, Yuanxin WU, Junfeng ZHANG,

期刊论文

A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids

Sainab Omar, Yang Yang, Jiawei Wang

期刊论文

Polydimethylsiloxane assisted supercritical CO

Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao

期刊论文

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

期刊论文

Thermo-economic analysis of a direct supercritical CO electric power generation system using geothermal

期刊论文

Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions

Sainab Omar, Suzanne Alsamaq, Yang Yang, Jiawei Wang

期刊论文

超临界化——优化我国火电结构应从这里起步

宋之平

期刊论文

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl

Kimthet Chhouk, Wahyudiono, Hideki Kanda, Shin-Ichro Kawasaki, Motonobu Goto

期刊论文